Cell lineage-specific expression and function of the empty spiracles gene in adult brain development of Drosophila melanogaster.

نویسندگان

  • Robert Lichtneckert
  • Bruno Bello
  • Heinrich Reichert
چکیده

The empty spiracles (ems) gene, encoding a homeodomain transcription factor, is a member of the cephalic gap gene family that acts in early specification of the anterior neuroectoderm in the embryonic brain of Drosophila. Here we show that ems is also expressed in the mature adult brain in the lineage-restricted clonal progeny of a single neuroblast in each brain hemisphere. These ems-expressing neuronal cells are located ventral to the antennal lobes and project a fascicle to the superior medial protocerebrum. All adult-specific secondary neurons in this lineage persistently express ems during postembryonic larval development and continue to do so throughout metamorphosis and into the adult. Mosaic-based MARCM mutant analysis and genetic rescue experiments demonstrate that ems function is autonomously required for the correct number of cells in the persistently expressing adult-specific lineage. Moreover, they indicate that ems is also required cell autonomously for the formation of the correct projections in this specific lineage. This analysis of ems expression and function reveals novel and unexpected roles of a cephalic gap gene in translating lineage information into cell number control and projection specificity in an individual clonal unit of the adult brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster.

In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. ...

متن کامل

Empty spiracles is required for the development of olfactory projection neuron circuitry in Drosophila.

In both insects and mammals, second-order olfactory neurons receive input from olfactory receptor neurons and relay olfactory input to higher brain centers. In Drosophila, the wiring specificity of these olfactory projection neurons (PNs) is predetermined by their lineage identity and birth order. However, the genetic programs that control this wiring specificity are not well understood. The ce...

متن کامل

Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila

We have studied the roles of the homeobox genes orthodenticle (otd) and empty spiracles (ems) in embryonic brain development of Drosophila. The embryonic brain is composed of three segmental neuromeres. The otd gene is expressed predominantly in the anterior neuromere; expression of ems is restricted to the two posterior neuromeres. Mutation of otd eliminates the first (protocerebral) brain neu...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila

We analyse the role of the empty spiracles (ems) gene in embryonic brain and ventral nerve cord development. ems is differentially expressed in the neurectoderm of the anterior head versus the trunk region of early embryos. A distal enhancer region drives expression in the deutocerebral brain anlage and a proximal enhancer region drives expression in the VNC and tritocerebral brain anlage. Muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 134 7  شماره 

صفحات  -

تاریخ انتشار 2007